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Stratocumulus clouds (Sc) have a significant impact on the amount
of sunlight reflected back to space, with important implications
for Earth’s climate. Representing Sc and their radiative impact is
one of the largest challenges for global climate models. Sc fields
self-organize into cellular patterns and thus lend themselves to
analysis and quantification in terms of natural cellular networks.
Based on large-eddy simulations of Sc fields, we present a first
analysis of the geometric structure and self-organization of Sc
patterns from this network perspective. Our network analysis
shows that the Sc pattern is scale-invariant as a consequence
of entropy maximization that is known as Lewis’s Law (scaling
parameter: 0.16) and is largely independent of the Sc regime
(cloud-free vs. cloudy cell centers). Cells are, on average, hexag-
onal with a neighbor number variance of about 2, and larger cells
tend to be surrounded by smaller cells, as described by an Aboav–
Weaire parameter of 0.9. The network structure is neither com-
pletely random nor characteristic of natural convection. Instead, it
emerges from Sc-specific versions of cell division and cell merging
that are shaped by cell expansion. This is shown with a heuristic
model of network dynamics that incorporates our physical under-
standing of cloud processes.
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C louds reflect incoming sunlight back to space and thus play
an important role in modulating energy flows in the cli-

mate system. The description of shallow clouds in current global
circulation models remains a challenge, however (1–3); due to
computational constraints, the small scales of cloud processes
cannot explicitly be resolved, and their subgrid-scale variability
needs to be diagnosed (parameterized) from grid-scale mean
quantities. The representation of stratocumulus (Sc) clouds, in
particular, is one of the largest uncertainties for future climate
projections (4, 5).

Sc clouds cover extensive parts of the subtropical oceans with
an intricate tapestry of shape and structure. Satellite images
reveal hexagonal cells that are reminiscent of patterns arising
from Rayleigh–Bénard convection (6). Indeed, Sc fields can
be considered a form of Rayleigh–Bénard convection in moist
atmospheric air (7); atmospheric flow is driven by a tempera-
ture difference over the depth of the planetary boundary layer,
and adiabatic cooling in upwelling regions leads to condensation
and cloud formation (Fig. 1). In the absence of rain, Sc fields
are arranged as approximately stationary cloudy cells separated
by cloud-free rings of downwelling air (closed cells, Fig. 1A) (8).
The formation of rain means that cloudy updraft regions develop
into regions of negatively buoyant air (cold pools) as a result of
sedimentation and evaporation of rain (Fig. 1B), (9–11). Cold
pools correspond to horizontally divergent flow at the surface
and are bounded by convergent rings of upwelling air that are
caused by the impingement of neighboring cold pools. Cold pools
thus form cloud-free cells surrounded by cloudy rings and orga-
nize into patterns of open cells that are inverse to the closed-
cell case. The pattern oscillates with the life cycle of open cells,
which form, grow, and spawn new cells that eventually replace
the dissipating parent cells (Figs. 1B and 2E). Closed cells, with
their broad updraft regions and narrow downdrafts, are driven by
radiative cooling at the top of the cloudy boundary layer, while

the inverse structure of open cells is driven by surface heating
(12). The formation of rain is often associated with deeper, more
cumuliform clouds emerging from relatively warmer sea surface
temperatures. Rain can also be triggered microphysically in very
clean environments. In both cases, the cold pools lead to surface-
driven dynamics (Fig. 1B).

Although the processes governing the evolution of Sc cells
have received considerable attention in recent years, the geo-
metric structure and arrangement of cells has not been studied
beyond a general recognition of an approximate hexagonality.
Cellular patterns are not only typical for Rayleigh–Bénard con-
vection but can also be observed in various other natural systems,
ranging from honeycombs (13) and cell tissue (14, 15) to mud
cracks (16) to polycrystals (17) and foams (18). In particular, the
study of the last two examples has led to the development of a
theoretical framework for the statistical analysis of cellular pat-
terns (e.g., ref. 18) that relates to graph theory, Voronoi tessella-
tions, and spatial networks (19). Based on this theory of natural
cellular networks, we present a first characterization of the geom-
etry of Sc cellular patterns and discuss the relationship between
pattern and the underlying cloud processes. Our results could
inform the development of new parameterizations of Sc in atmo-
spheric models.

Results
Fig. 3 shows snapshots of open- and closed-cellular cloud cover
from large-eddy simulations (LES) (Materials and Methods). We
identify cells based on the horizontal divergence fields (at cloud
top for cloud-top driven closed cells and at the surface for
surface-driven open cells), which are more directly related to
the cloud processes than, e.g., column-integrated cloud water
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Fig. 1. Conceptual sketch of processes leading to Sc clouds. (A) The extensive cloud cover of closed-cell Sc causes significant radiative cooling at the
top of the cloud layer (blue shading) that sustains a top-driven circulation of narrow downdrafts (blue arrows) and broad updrafts (red arrows). In the
upper section of the updrafts, atmospheric air is sufficiently cooled by adiabatic expansion for condensation of water vapor to form clouds. From the top
view, cloudy cells of warmer rising air (red shading and � symbol) are surrounded by rings of colder, sinking air (blue line). (B) Strong narrow updrafts (red
arrows) result in clouds deep enough to develop into shafts of rain (blue stippling). Sedimentation of rain and, more so, its evaporation in the subcloud layer
(thinning of stippling) cause broad downdrafts, or cold pools, (blue arrows). At the surface, the outflows from neighboring cold pools force new updrafts
(red arrows). A sea surface warmer than the adjacent air (red shading) can additionally trigger and support strong updrafts. The top view illustrates that the
strongest updrafts (red symbol �) emerge at the intersection of the outflow boundaries (red lines) of three, rather than two, cold pools (blue symbol ⊗).
The oscillatory temporal evolution from clouds to cold pools to new clouds is depicted in Fig. 2E.

(cloud water path). A Voronoi tessellation based on cell centers
is applied to define a planar, spatial network of cloud cells as
illustrated in Fig. 3, where nodes correspond to cells and links
connect nearest neighbors (e.g., ref. 19, section 2.1).

Cloud Network Characteristics. The cloud field rearranges with
time such that the derived network is time-dependent. Similar to
epidermal tissue but in contrast to the slow coarsening of foams
(20), it evolves approximately as a dynamic steady state where the
average number of cells, i.e., the average cell size, is constrained
by the aspect ratio of atmospheric Rayleigh–Bénard cells (Fig.
S1). For our statistical analysis, we consider network data from
all steady-state time steps as samples.

The average area of n-sided cells, 〈An〉, scales with the average
cell area 〈A〉aswellaswith thenumberof sidesn (Fig.S2 Aand B),

〈An〉
〈A〉 = 1− λ · (6− n). [1]

This relationship is known as Lewis’s Law (15, 21, 22), and the
parameter λ is characteristic of the specific system under study
(Table 1). As an important consequence, the cell arrangement
as described by the network characteristics is independent of the
average cell size, which corresponds to the typical length scale
of the system. Pattern in Sc can be considered scale-invariant in
this sense.

Due to Lewis’s Law, the distribution of relative cell sizes
〈An〉/〈A〉 corresponds to the distribution of nearest neighbors,
i.e., to the degree distribution of the network. The distributions
in Fig. 4 A and B show that the Sc patterns for closed as well
as open cells are a mixture of pentagons, hexagons, and hep-
tagons, with a few four- and eight-sided cells. The distributions
are peaked at six (Fig. 4 A and B) such that cloud cells are, on
average, hexagonal. According to Euler’s Formula from graph
theory in two dimensions, this is a consequence of the triple junc-
tions featured by cloud and Voronoi cells (Fig. 3 and ref. 21).
For irregular Voronoi tessellations, nontriple junctions are very
improbable. In evolving systems, quadruple junctions break up
into two triple junctions as a result of random fluctuations of cell
walls. In physical systems with surface tension, the breakup is not
random, but is driven by the local minimization of the interface
length, which is reduced for two triple compared with a quadru-
ple junction. Unlike, e.g., foams, cloud cells do not feature a sur-
face tension. Nevertheless, the dynamic pressure at the boundary
of expanding cold pools acts equivalently to the Laplace pressure
resulting from surface tension. In both cases, the temporal evo-

lution strives to decrease local curvature, corresponding to the
local minimization of the interface. Given the widespread occur-
rence of approximately hexagonal structures, the variance of the
neighbor number distribution, σ2, rather than its mean, is used
for characterization of the network (Table 1).

A B

C D

E

Fig. 2. Network dynamics. Transformations on triple junction networks can
be decomposed into (A) edge flips and (B) the appearance or disappear-
ance of triangular cells. They correspond to changes ∆n in edge number n.
Closed-cell Sc dynamics can be conceptually modeled as (C) cell division and
(D) cell merging. (E) Open-cell dynamics feature spatially collocated appear-
ance of new cells, cell growth by edge flips, and cell disappearance (example
realization shown). Colors correspond to the top views in Fig. 1.
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Fig. 3. Illustration of cloud-cell networks for (A) closed-cell and (B) open-cell Sc. The figure shows cloud water path [white for values larger than>0.07 mm
(A) or>0.1 mm (B); gray otherwise], horizontal divergence field [(A) at cloud top, pink contour at −0.009 s−1; (B) at the surface, contour at −0.003 s−1] and
Voronoi tessellation (cell centers and boundaries in green) for typical snapshots [simulation time (A) 450 min and (B) 825 min]. Exemplary triple junctions
are highlighted by Y-shaped lines.

The average number of sides featured by the cells surrounding
an n-sided cell, 〈Nn〉, characterizes the arrangement of cells. We
find that the Sc network fulfills the Aboav–Weaire Law (17, 21,
23) (Fig. S2 C and D),

〈Nn〉 = (6− a) +
6a + σ2

n
. [2]

Here, the number Nn decreases with n if a/σ2 + 1/6> 0, which
corresponds to larger cells being surrounded by smaller cells and
vice versa. Otherwise, large and small cells cluster separately. For
Sc (Table 1), large (many-sided) cloud cells are surrounded by
smaller (few-sided) ones. This is consistent with the continuously
renewing dynamics of Sc fields, in which growing new (small)
cells replace older (larger) cells, as will be discussed in more
detail in Heuristic Model for Cloud Organization.

It is interesting to note that the Lewis and Aboav–Weaire laws
are related to the system entropy. A violation of these laws would
indicate that the system is prevented from further maximizing
its entropy by system-specific constraints [maximum entropy for-
malism (21, 24, 25)]. Accordingly, Sc cell networks are as ran-
dom as allowed by general geometrical, topological, and statis-
tical constraints, and there are no external factors that would
increase the order of the system.

Entropy maximization results in a certain relationship between
cell size and neighbor number (Lewis’s Law) and certain neigh-
bor correlations (Aboav–Weaire Law) but does not prescribe
the parameters σ2, λ, and a . Their values and the correspond-
ing network structure thus encode information about the system-
specific processes shaping the network. Table 1 summarizes the
characteristics of open- and closed-cell Sc networks and shows
that they share very similar parameter values despite the dis-
tinctly different cloud processes underlying the two regimes. Only
the variance of the neighbor number distribution σ2 tends to
be slightly larger for the open-cell case. The Sc network param-
eters are, however, distinctly different from Voronoi networks
derived from randomly placed points, as well as being different
from observational results for solar granulation (26) and experi-
mental Bénard–Marangoni convection (27). This indicates that Sc
convection is shaped neither by randomness nor by rules generic
to natural convection. Sc patterns instead emerge from processes
common to open and closed cells, as explored in the following.

The characteristics of the Sc networks emerge as a dynamic
steady state from the evolution of specific network dynamics

that continuously rearranges cloud cells. For a 2D natural cellu-
lar network with triple junctions, there are two elemental trans-
formations that preserve triple junctions, and into which more
complicated transformations can be decomposed (28): edge flips
(Fig. 2A) and the appearance or disappearance of a triangu-
lar cell (Fig. 2B). Edge flips redistribute the number of edges
between neighboring cells. In combination with Lewis’s Law,
they thus correspond to the growth of cells at the expense of
neighboring cells. Appearance or disappearance changes the
total number of cells in a network.

The effect of a network transformation leaves a topological
scar (e.g., ref. 29), i.e., it changes the neighbor numbers of collo-
cated cells in a distinct way. To allow for a statistical evaluation,

Table 1. Comparison of network properties based on LES,
examples of natural convection from the literature, and heuristic
network models

Source 〈n〉 σ2 λ a a
σ2 + 1

6

LES
Closed cells 6 1.8 0.16 0.93 0.7
Open cells 6 2.4 0.17 0.87 0.5

Literature
Random Voronoi network 6 1.78 0.25 0.75 0.59
Solar granulation 6 1.78 0.25 >0.75 >0.59
Bénard–Marangoni convection 6 0.2–0.8 0.23 1.4 1.9–7.2

Network models
Random flips 6 10.6 – −0.79 0.1
Biased flips 6 1.2 – 0.77 0.8
Closed cells 6 1.3 – 0.35 0.4
Open cells 6 1.4 – −0.20 +0.0

Listed are the average number of neighbors n, the variance of the neigh-
bor number distribution σ2, the Lewis parameter λ (not applicable for the
purely topological network models), and the Aboav parameter a. Positive
values in the last row indicate that larger cells are surrounded by smaller
ones (see Cloud Network Characteristics). LES-derived and model values
are rounded to the accuracy indicated by LES sensitivity tests to the eval-
uation parameters (Materials and Methods). Literature values for the ran-
dom Voronoi network are based on refs. 33–36, and values for Bénard–
Marangoni convection are based on ref. 27. The values for solar granula-
tion are inferred from ref. 26, who describe solar granulation as a random
Voronoi network with slightly increased order in cell arrangement. For ran-
dom flips, our model is in accordance with analytical derivations of ref. 37.
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Fig. 4. (A–D) Neighbor number distributions, which are equivalent to the size and degree distribution (see Cloud Network Characteristics), with variance
σ2 and (E–H) topological scar (see Cloud Network Characteristics) for the LES-derived (A and E) closed- and (B and F) open-cellular networks and for the
networks resulting from the (C and G) closed-cell and (D and H) open-cell heuristic network model.

we visualize topological scars as a pattern of pairs (∆n1,∆n2)
in a diagram accounting for the changes in the number of
neighbors ∆n1<∆n2 of two neighboring cells. As illustrated
in Fig. 2A, flips are characterized by (∆n1,∆n2)∈{(−1, 0),
(−1,+1), (0,+1), (+1,+1)}. The appearance of a cell cor-
responds to (∆n1,∆n2)∈{(0,+1), (+1,+1), (+1,+3)}, and
the disappearance corresponds to (∆n1,∆n2)∈{(−3,−1),
(−1,−1), (−1, 0)}. Fig. 4 E and F shows the topological scars
resulting from the temporal evolution of the LES-derived cloud
networks. In accordance with the very similar network char-
acteristics in Table 1, closed- and open-cell networks feature
very similar topological scars. This indicates that the open-
and closed-cell networks are governed by comparable network
dynamics. Both scars bear the imprint of flips (center of the
plots) along with the appearance and disappearance of six-
sided cells [peaks at (∆n1,∆n2) = (0,±6)] and the simultane-
ous appearance or disappearance of two neighboring six-sided
cells [(∆n1,∆n2) = (±6,±6)]. The appearance of six-sided cells
combines the appearance of a three-sided cell with three con-
secutive edge flips that increase the new cell’s neighbor num-
ber. This means that we do not fully resolve elemental trans-
formations in our analysis. The simultaneous appearance of
two cells indicates a spatial asymmetry of the spawning pro-
cess such that new cells emerge at neighboring vertices rather
than in a triangular arrangement that would promote a perfectly
hexagonal grid.

Heuristic Model for Cloud Organization. Combining elemental
transformations, we propose network dynamics Tclosed for closed-
cellular (Fig. 2 C and D) and Topen for open-cellular (Fig. 2E)
networks that encapsulate our physical understanding of the cor-
responding cloud processes (also see Supporting Information):
For the oscillatory dynamics of the open-cell case, a parent cell
with np = 6 neighbors can potentially spawn new cells at all of
its vertices. The development of a new cell, however, requires
space for expansion. This is given in the neighborhood of older
and larger cells with nc/d ≥ 6, which are weakened as a result
of dissipating rain. We assume that new cells quickly expand at
the expense of these cells until both cells have similar sizes with
na/b/c/d≥ 5. To conserve the overall number of cells, the time step
is finalized by the disappearance of cells c and d .

The quasi-stationary closed-cell dynamics is less structured,
and its evolution consists of spatially separated pairs of cell divi-
sion (Fig. 2C) of cells with np ≥ 6 neighbors and cell merging

(Fig. 2D). Cell division and merging can be decomposed into the
appearance, or disappearance, of a new cell and edge flips (Fig.
S3 A–I). When not resolving the intermediate steps including tri-
angular cells, the open-cell dynamics can thus be considered a
double cell division followed by a double cell merging at the same
location (see Supporting Information). In this sense, the dynamics
governing open and closed cells are equivalent, which explains
the very similar neighbor number distributions and topological
scars. Our analysis does not fully resolve the intermediate steps
because it is difficult to separate fluctuations that are not part of
the organized convective motion from newly emerging cells. The
intermediate occurrence of these cells is, however, reflected in
the slightly larger variance σ2 of the open-cell neighbor number
distribution (Table 1).

As illustrated in Fig. 4 E and F, edge flips occur much more
frequently than cell appearance and disappearance events. The
way of choosing edges for flips can thus strongly influence the
network properties: Table 1 and Fig. S4A illustrate the network
properties resulting from iteratively applying flips Frand to ran-
domly chosen edges of an initial network (see Supporting Infor-
mation). The result is a very broad size distribution where few-
sided cells are more populated than many-sided cells, because
the latter are more likely to be randomly selected for edge flip-
ping. This scenario of edge flipping is not congruent with cloud
field dynamics, where edge flips are driven by the expansion
of small cells (30). We account for this bias by selecting those
edges of a given cell for which nb + nd in Fig. 2A is smallest.
The network resulting from edge flips Fbias biased in this man-
ner is peaked at six (Fig. S4B). The specific bias of flips can be
considered as an adjustable “parameter” of the network model
that is needed to capture the details of the physical system that
are lost when interpreting it as a network. This has been illus-
trated for foam ripening, where experimental results of a ≈ 1.2
(31) are reproduced when explicitly taking surface tension into
account for determining edge flips (32), but not for random flips
(24). The identical bias for open and closed cells contributes
to their equivalent network evolution. Examples of natural con-
vection with differing network structure likely feature other
biases.

Based on the rules Tclosed and Topen, we can model the evolu-
tion of a cloud network by iteratively applying them at random
locations, starting from a suitable initial network (see Support-
ing Information). To mimic the competition of cells for space
independent of cell division or merging events, we add two
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edge flips Fbias at random locations for each application of
Tclosed or Topen. Apart from the initial condition, whose influ-
ence vanishes as the network approaches the steady state that
is consistent with the iteratively applied network dynamics, this
network model is independent of the LES simulations. Fig.
4 C, D, G, and H illustrates the resulting neighbor number
distributions and topological scars. They are, on the one hand,
very similar for the heuristic models of open and closed cells,
which confirms that both are equivalent. On the other hand, they
are in reasonable agreement with the LES-derived results, where
the two additional edge flips ensure an appropriate weighting
of flips compared with cell appearance and disappearance. Net-
work parameter values are listed in Table 1 and show qualita-
tive agreement with σ2> 1 and values of a such that larger cells
are surrounded by smaller ones. The network model can thus
qualitatively explain the emergence of the network characteris-
tics derived from LES.

Discussion and Conclusion
We have presented a first analysis of the geometric structure and
organization of cellular patterns in Sc cloud fields. We demon-
strate that these patterns can be described as natural cellular
networks (Fig. 3). Our network analysis shows that different Sc
fields share a common structure that is independent of the details
of boundary layer and cloud processes: As a consequence of
entropy maximization, the size of an individual Sc cell scales with
the average cell size in the Sc field and with its number of neigh-
boring cells (Lewis’s Law, Eq. 1). This scale independence means
that the pattern in Sc does not encode information about deter-
minants of Sc evolution like boundary layer depth, sea surface
temperature, aerosol concentration, or rain rate. This complex-
ity is instead encapsulated in the average cell size.

The macroscopic Sc pattern emerges from local transforma-
tion rules. By proposing a heuristic model of network dynam-
ics (Fig. 2), we explain that the characteristics of cloud networks
follow from the random interplay of expansion and weakening
of convective outflows: Cell growth, corresponding to the expan-
sion of convective outflows and represented by edge flips with a
characteristic bias, is the most frequently occurring transforma-
tion (Fig. 4 E and F). The local dynamics of convective outflows
follows the laws of hydrodynamics and is thus largely indepen-
dent of the scale and regime (open vs. closed) of the convection.
In addition, the network transformations mimicking the differ-
ing underlying cloud processes that create closed as opposed to
open cells (Fig. 1) are equivalent and are both given by forms of
cell division and cell merging (Fig. 2). As a consequence, Sc cell
arrangement is the same for open and closed cells.

The details of network transformation rules determine the
numerical parameters that characterize the structure of the Sc
cell network (Table 1): Sc cells are, on average, hexagonal (Fig.
4 A and B), because the competition of convective outflows
for space results in triple junctions of cell walls (Fig. 3). For
triple junctions in two dimensions, hexagonality is a mathemati-
cal necessity (Euler’s formula). Nonhexagonal cells are arranged
such that larger cells are surrounded by smaller ones. Although
qualitatively in agreement, the parameter values for Sc do not
seem universal to natural convection, as they differ from those of
Bénard–Marangoni convection (27) and solar granulation (26).
Future studies based on heuristic network models could reveal
the system specifics behind these differences.

The heuristic model of network dynamics extends the current
process understanding, especially of open cell Sc. It illustrates
that the spawning of new cells in open-cell Sc happens at neigh-
boring vertices, located next to a common area of decaying cells
that allows for the expansion of newly formed cells. Our anal-
ysis thus confirms (38) that the arrangement of rainy patches
is crucial to open-cell dynamics and provides guidance on the
details of the required arrangement. From a systemic point of

view, the network analysis reveals that the self-organization of
the open-cell pattern does not require system-wide synchroniza-
tion in the sense of an intimate timing of the oscillatory evo-
lution of distant clouds as investigated by ref. 39. Instead, the
open-cell pattern is obtained from local random transforma-
tions that are constrained by topology and geometry. Along the
same lines, because the nodes of the Sc network have a nar-
row degree distribution (Fig. 4 A–D), there are no cells that
take on the role of central hubs as speculated by ref. 40. Only
on the local level is it the parent nodes that drive the network
rearrangement.

In combination with information about the average cell size
and the cell regime (closed vs. open), our results describe the
spatial structure in Sc-topped boundary layers that is required to
explicitly parameterize subgrid-scale variability in low-resolution
atmospheric models. Along the lines of ref. 41, both average
cell size and regime can be related to the slow manifold of Sc
evolution. Slowly evolving variables (timescale of days), notably
the boundary layer height, provide boundary conditions for pro-
cesses on faster timescales (timescale of hours). The size of Sc
cells is known to scale with the depth of the boundary layer based
on a fairly well-constrained aspect ratio (cell diameter:boundary
layer depth) between 1:30 and 1:40 (42). The average cell size can
thus be considered a slowly evolving variable. The cell regime
is also related to the boundary layer depth in that open cells
become more probable than closed cells with increasing bound-
ary layer height (Fig. 1). As a second dimension, the dynamic
evolution of the background aerosol concentration can control
the slow evolution of the cell regime (43, 44). The proposed
heuristic modeling of network dynamics describes the evolution
on the fast manifold. It is universal and independent of the evo-
lution of the slow variables that emerges from the complex inter-
play of boundary layer processes. Thus, the disentangling of pro-
cess complexity and cloud pattern provided by our network anal-
ysis presents a kind of simplification usually not achieved for
atmospheric processes and suggests that new approaches from
dynamical systems theory have great potential for atmospheric
science in general and clouds in particular.

Materials and Methods
We perform LES with the System for Atmospheric Modeling (45) with the
same setup as used by ref. 46 (zero horizontal winds in the initial state).
The Sc case is based on observed initial and boundary conditions [Dynam-
ics and Chemistry of Marine Sc Field Study II, Research Flight 02 (47)], which
have a tendency to transition from the closed- to the open-cell regime when
drop concentration is sufficiently low. Following ref. 46, we obtain an open-
cell simulation by reducing the number of cloud droplets from 90 mg−1

to 15 mg−1 using the time series prescribed in ref. 46. Details of the LES
setup are given in Table S1. The LES model output is available from the
authors upon request. To identify cells, cell walls are completed and broad-
ened by applying a minimum filter to the divergence field, which replaces
the original values in the footprint region of the filter by the region’s min-
imum value. Cells are then defined as contiguous regions with divergence
larger than a threshold value of 0.009 s−1 for closed cells, and 0.003 s−1 for
open cells. For closed and open cells, only features larger than 0.3675 km2,
or 2 km2, respectively, are considered cells. The results were found to be
robust when varying threshold and feature size up to a factor of 2. We find
the centers of these cells by calculating the center of mass of the divergence
field within each cell. Cells are tracked in time by assuming that the center
of a cell does not move more than half the cell’s extension in both horizontal
directions from one time step to the next. A heuristic description of the algo-
rithms for the network model can be found in Supporting Information. The
full python code is available online (https://github.com/fglassmeier/cellnet).
Representative results obtained with a single random seed are shown.
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